271 research outputs found

    Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein

    Get PDF
    Six genes encode proteins with acyl-CoA-binding domains in Arabidopsis thaliana. They are the small 10-kDa cytosolic acyl-CoA-binding protein (ACBP), membrane-associated ACBP1 and ACBP2, extracellularly-targeted ACBP3, and kelch-motif containing ACBP4 and ACBP5. Here, the interaction of ACBP4 with an A. thaliana ethylene-responsive element binding protein (AtEBP), identified in a yeast two-hybrid screen, was confirmed by co-immunoprecipitation. The subcellular localization of ACBP4 and AtEBP, was addressed using an ACBP4:DsRed red fluorescent protein fusion and a green fluorescent protein (GFP):AtEBP fusion. Transient expression of these autofluoresence-tagged proteins in agroinfiltrated tobacco leaves, followed by confocal laser scanning microscopy, indicated their co-localization predominantly at the cytosol which was confirmed by FRET analysis. Immuno-electron microscopy on Arabidopsis sections not only localized ACBP4 to the cytosol but also to the periphery of the nucleus upon closer examination, perhaps as a result of its interaction with AtEBP. Furthermore, the expression of ACBP4 and AtEBP in Northern blot analyses was induced by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, methyl jasmonate treatments, and Botrytis cinerea infection, suggesting that the interaction of ACBP4 and AtEBP may be related to AtEBP-mediated defence possibly via ethylene and/or jasmonate signalling

    Magnetic Field Confinement in the Corona: The Role of Magnetic Helicity Accumulation

    Full text link
    A loss of magnetic field confinement is believed to be the cause of coronal mass ejections (CMEs), a major form of solar activity in the corona. The mechanisms for magnetic energy storage are crucial in understanding how a field may possess enough free energy to overcome the Aly limit and open up. Previously, we have pointed out that the accumulation of magnetic helicity in the corona plays a significant role in storing magnetic energy. In this paper, we investigate another hydromagnetic consequence of magnetic-helicity accumulation. We propose a conjecture that there is an upper bound on the total magnetic helicity that a force-free field can contain. This is directly related to the hydromagnetic property that force-free fields in unbounded space have to be self-confining. Although a mathematical proof of this conjecture for any field configuration is formidable, its plausibility can be demonstrated with the properties of several families of power-law, axisymmetric force-free fields. We put forth mathematical evidence, as well as numerical, indicating that an upper bound on the magnetic helicity may exist for such fields. Thus, the accumulation of magnetic helicity in excess of this upper bound would initiate a non-equilibrium situation, resulting in a CME expulsion as a natural product of coronal evolution.Comment: 6 figures, ApJ in pres

    Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells

    Get PDF
    As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5 ′-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases. © 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.postprin

    Voltage control of nuclear spin in ferromagnetic Schottky diodes

    Full text link
    We employ optical pump-probe spectroscopy to investigate the voltage dependence of spontaneous electron and nuclear spin polarizations in hybrid MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction, nuclear spin polarization that is imprinted by the ferromagnet acts on conduction electron spins as an effective magnetic field. We demonstrate tuning of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage across the MnAs device. In addition, a connection is observed between the diode turn-on and the onset of imprinted nuclear polarization, while traditional dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3 figure

    Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users.

    Get PDF
    Cannabis (CB) use and dependence are associated with regionally specific alterations to brain circuitry and substantial psychosocial impairment.The objective of this study was to investigate the association between CB use and dependence, and the volumes of brain regions critically involved in goal-directed learning and behaviour-the orbitofrontal cortex (OFC) and caudate.In the largest multi-site structural imaging study of CB users vs healthy controls (HC), 140 CB users and 121 HC were recruited from four research sites. Group differences in OFC and caudate volumes were investigated between HC and CB users and between 70 dependent (CB-dep) and 50 non-dependent (CB-nondep) users. The relationship between quantity of CB use and age of onset of use and caudate and OFC volumes was explored.CB users (consisting of CB-dep and CB-nondep) did not significantly differ from HC in OFC or caudate volume. CB-dep compared to CB-nondep users exhibited significantly smaller volume in the medial and the lateral OFC. Lateral OFC volume was particularly smaller in CB-dep females, and reduced volume in the CB-dep group was associated with higher monthly cannabis dosage.Smaller medial OFC volume may be driven by CB dependence-related mechanisms, while smaller lateral OFC volume may be due to ongoing exposure to cannabinoid compounds. The results highlight a distinction between cannabis use and dependence and warrant examination of gender-specific effects in studies of CB dependence
    corecore